Archivos en la categoría tecnología

Viernes, 3 de Abril de 2015

Una prótesis tan natural como la extremidad que ha reemplazado

Las prótesis, robots y otros aparatos para personas con distintas discapacidades ya están integrándose fuertemente con el cerebro del paciente.



Por Glenys Álvarez

En el futuro, la tecnología desea integrarse y trabajar contigo. Es lo que hemos estado observando durante años, los ingenieros enseñan a las computadoras a seguir las órdenes del cerebro del paciente a través de una interfaz, y cada vez se entienden más. Hemos visto personas comunicarse de una oficina a otra utilizando sólo el cerebro y una computadora, las prótesis son más eficientes porque han sido sintonizadas bajo el mando de las neuronas del paciente y hasta las sillas de ruedas estarán bajo el mando neuronal del paciente.

El objetivo es que se sienta natural, que la mano cierre obedeciendo las órdenes directas del cerebro, como una mano normal, no porque existe un botón que lo haga, sino porque ya está conectada a los nervios de la persona que la requiere. La meta final es que sean tan cómodas como las originales. Estos dispositivos están modelados para decodificar las señales del cerebro y actuar acorde, conectados a la médula espinal permiten que exista comunicación directa entre la persona y la tecnología para que funcione como un motor natural, recibiendo, entendiendo y aplicando las órdenes del cerebro.

En esta ocasión, por ejemplo, el investigador José del R. Millán, del Instituto Federal Suizo de Tecnología en Lausanne, presentó esta semana un nuevo trabajo en la conferencia de la Sociedad de Neurociencia Cognitiva (SCN) en San Francisco, asegurando que las nuevas neuroprótesis permiten realizar tareas complejas. Millán, quien comenzó su carrera diseñando robots autónomos que pueden aprender de sus propias experiencias, ahora se dedica a que estos robots ayuden a las personas con discapacidades.

“El objetivo es que lo hagan de una forma muy natural, directa e intuitiva. ¿Y qué más directo que decodificar la intención del usuario de sus propias señales cerebrales?”, pregunta.

En medio del cerebro del usuario y el dispositivo se encuentra la interfaz. Es lo que se encarga de leer y decodificar las señales del paciente, en otras palabras, al pensar, 'deseo cerrar mi mano en un puño', la interfaz lo lee y lo decodifica para que la computadora lo aplique, así, el pensamiento pasa del cerebro, a la interfaz y a la prótesis. Si nos ponemos a pensar en todas las cosas que es capaz de hacer nuestro cerebro, recordamos claramente lo dificultoso que una tarea como esta puede ser. Podemos hacer actividades varias, muchas de forma automática, mientras nuestro cerebro se concentra en otras, y es precisamente donde los investigadores quieren llegar.

“Las prótesis y los robots que nuestras interfaces controlan son inteligentes, ya que pueden interpretar muchos detalles de bajo nivel que no necesariamente están codificados en las órdenes mentales, también trabajan de forma autónoma, esta función refleja cómo nuestras áreas profundas del cerebro, la médula espinal y el sistema musculoesquelético, trabajan juntos en muchas tareas rutinarias, lo que permite a nuestros cuerpos hacer tareas sencillas, mientras centramos nuestra atención en otra parte”, aseguró.

En la imagen, por ejemplo, vemos una silla de ruedas que el equipo de Millán elaboró el año pasado. Esta silla de ruedas está controlada completamente por el cerebro del usuario, quien puede manejarla por un largo periodo de tiempo debido al sistema de control compartido que reduce el trabajo cognitivo que debe poner el usuario para controlarla. Estas sillas de ruedas se encuentran ahora en su fase de evaluación.

Los investigadores se encuentran ahora ante tres retos: el primero es encontrar nuevas interfaces físicas, además del EEG, que funcionen de forma permanente y por largos períodos de tiempo, el segundo es alcanzar una mejoría en la retroalimentación sensorial y, finalmente, tenemos el foco de la neurociencia cognitiva hoy, decodificar e integrar la información en un circuito entre la prótesis y los procesos perceptivos del paciente, incluyendo atender los errores que cometan las prótesis y la anticipación en puntos críticos y decisivos.

“Las neuroprótesis futuras, como robots y exoesqueletos controlados a través de interfaces inteligentes, estarán fuertemente acopladas con el usuario de tal manera que el sistema resultante podrá sustituir y restaurar las funciones de las extremidades deterioradas porque será controlado por las mismas señales neuronales que controlan sus contrapartes naturales. Esto ya no es ciencia ficción”, concluyó.


Millán presentó su nuevo trabajo aquí: https://www.cogneurosociety.org/annual-meeting/upcoming-meeting/

Crédito de imagen: José del R. Millán
Miercoles, 20 de Febrero de 2013

La revoluición digital ¿nos está quitando el trabajo?

Andrew McAfee nos propone un tema interesante, ¿están las máquinas quitándonos el trabajo? Robots, algoritmos etc., están cada vez más introducidos en el mercado laboral, a cada día que pasa, las máquinas más y más realizan las tareas que hasta hace poco realizábamos los humanos, ¿llegará un día en que las máquinas hagan todo el trabajo? Os dejo con esta interesante y provocadora charla:
Jueves, 17 de Mayo de 2012

Ejerciendo el control sobre transistores de plástico

El corazón, el núcleo, la base de todo circuito electrónico es el transistor. El transistor es un diminuto dispositivo de tres terminales. Puede usarse de diferentes formas. Una de ellas se usa en la electrónica analógica donde normalmente se utiliza como un amplificador, es decir, la señal que se inyecta por uno de sus terminales (la puerta) aparece amplificada en otro de los terminales. La otra forma obviamente es tal y como se usa en la electrónica digital, donde el transistor actúa como una especie de interruptor. Si el interruptor está cerrado entonces deja pasar la señal, si está abierto, la señal no puede pasar. A estos dos estados  les asignamos los valores "1" o "0". Que valor asignemos a que estado es un poco irrelevante siempre y cuando mantengamos siempre el mismo criterio.

El material que se usa para la construcción de los transistores es principalmente silicio. Pero la tecnología avanza y no paran de buscarse opciones alternativas que puedan ofrecer algunas ventajas respecto al silicio. Una de las opciones que más se han escuchado es la de hacer transistores orgánicos, es decir, construir transistores cuyo componente base sea el carbono en lugar del silicio. A este respecto, Lars Herlogsson, uno de los integrantes del Grupo de Investigación de Electrónica Orgánica de la Universidad de Linköping, presentó el año pasado la posibilidad de construir transistores de plástico (para ser exactos transistores de efecto de campo) completamente funcionales.

Ahora un trabajo liderado por Kergoat, otro miembro del grupo al que pertenece Herlogsson, ha mostrado que dichos transistores pueden ser controlados con gran precisión. El trabajo ha aparecido publicado en Proceedings of the National Academy of Sciences bajo el título Tuning the Threshold Voltage in Electrolyte-Gated Organic Field-Effect Transistors.

El funcionamiento digital de un transistor a grandes rasgos es como sigue. Uno de los terminales(la puerta) es la que controla que el transistor actué como un interruptor. Por ejemplo, si en la puerta se aplica una señal de X voltios, entonces el “interruptor” se cierra, es decir, es como si los otros dos terminales estuvieran unidos, de tal manera que la señal de uno de ellos pasa al otro. Si la señal aplicada en la puerta del transistor se de Y voltios entonces el “interruptor” se abre, esto es, los otros dos terminales quedan desconectados y ninguna señal puede pasar de uno a otro.

Lo que el trabajo de Kergoat ha demostrado es que en los transistores de efecto de campo construidos con plástico se puede controlar este comportamiento de forma muy precisa. Una de las características necesarias de los transistores construidos con plástico es que el voltaje que se aplica a la puerta para controlar su comportamiento debe ser bajo, idealmente lo más próximo a cero posible. Kergoat y su equipo ha conseguido que dicho voltaje sea de 0,9 voltios. Este bajo voltaje presenta una ventaja clara a la hora de integrar varios de estos transistores en un mismo circuito, y es que cuanto menor sea los voltajes manejados mejor será la relación señal a ruido de dichos circuitos.