Archivos en la categoría inflación

Miercoles, 3 de Septiembre de 2014

Ya teníamos pruebas de la inflación cosmológica antes del BICEP2

En los últimos meses han corrido ríos de tinta sobre la inflación cosmológica. El culpable de ello ha sido el experimento observacional BICEP2, según el cual se habrían encontrado la impronta que las ondas gravitatorias generadas por la inflación habrían dejado en el fondo cósmico de microondas. Aunque bien es cierto que los resultados se han puesto en entredicho por la comunidad científica, por lo que a día de hoy, no podemos concluir que tengamos la prueba de la existencia de dichas ondas gravitatorias. Por el momento toca ser pacientes y esperar, con una buena dosis de escepticismo, a mejores análisis de la señal, así como a los datos que pueda aportar la misión Planck al respecto, los cuales pueden ser cruciales.

El caso es que, en los medios de comunicación, cada vez que se hablaba de los resultados del BICEP2, se tendía a decir que era la primera evidencia de la inflación cosmológica, y esto es un error, puesto que ya tenemos evidencias de que la inflación tuvo lugar.

La forma más sencilla de hablar de la inflación, sin meternos en terrenos pantanosos y extremadamente complejos, es hablar de que el Universo al principio experimentó una expansión exponencial. Dicho de otro modo, su tamaño creció de forma vertiginosa en una fracción de tiempo inimaginablemente pequeña. Estamos hablando de unos 10-32 segundos, de ahí el adjetivo “inimaginable”, al menos, para quien esto escribe, es un lapso tan breve de tiempo que no puedo imaginarlo.

Las pruebas de la inflación se encuentran en las características de la radiación de fondo, una radiación que permea todo el universo y que está presente miremos hacia donde miremos. Esta radiación debe sus características a los procesos físicos que sucedieron antes de que fuera “generada”, y es a través de ella cómo desde hace años sabemos que la inflación probablemente tuvo lugar.

Si observamos el universo, vemos que está lleno de estructuras, galaxias, cúmulos de galaxias, etc. La materia está apelotonada en estas estructuras y, por lo tanto, en algún momento del pasado debieron formarse las semillas primigenias de las cuales, con el paso del tiempo y el trabajo principalmente de la gravedad, se formaron las estructuras que vemos hoy en día. El fondo cósmico de microondas se formó cuando el universo tenía tan solo unos 380.000 años, y ya llevaba impreso la huella de esas semillas de la estructura del cosmos. Y precisamente esa huella de los orígenes de las estructuras actuales se debería al proceso que hemos dado en llamar inflación cosmológica.

Al principio en el Universo existían pequeñas fluctuaciones cuánticas en su estructura, dicho de otro modo no era perfectamente homogéneo. Estas pequeñísimas diferencias sufrieron el proceso de inflación que, como hemos mencionado más arriba, consistió básicamente en hacer que el Universo crecía de tamaño exponencialmente, por lo tanto, esas diminutas variaciones se vieron incrementadas en su tamaño, dando lugar a las semillas de las estructuras del universo actual.

Image Credits: ESA and the Planck Collaboration
Los tonos cálidos son fotones menos 
energéticos

En la radiación de fondo se recogen esas variaciones respecto a la homogeneidad perfecta. Como sabemos, la radiación está compuesta de fotones, estos fotones pueden tener una determinada cantidad de energía, que es igual al producto de la frecuencia asociada a los mismos (recordemos que toda partícula es una onda y viceversa) y la constante de planck. Ahora bien, como hemos mencionado, esas pequeñísimas fluctuaciones cuánticas presentes en los inicios del universo fueron agrandadas por la inflación, por lo tanto, a la hora en la que se formó la radiación de fondo, teníamos zonas donde había más concentración de materia que en otras. Los fotones del fondo cósmico que intentaran salir de esas zonas tenían que luchar con la mayor gravedad de esas zonas, perdiendo algo de energía en esa lucha por abandonar esas regiones y, por lo tanto, convirtiendose en fotones algo menos energéticos que los que salían de regiones con menos concentración de masa. Observando en la radiación de fondo esa diferencia de energía entre unos fotones y otros es cómo podemos deducir la existencia de esas estructuras primigenias, fruto de la brutal expansión del universo causada por la inflación.

Esta ya se había detectado con distintos observatorios. Los más famosos y recientes son las sondas COBE, WMAP y Planck, así pues, ya teníamos evidencias de que la inflación tuvo lugar. La supuesta detección de ondas gravitatorias producidas por la inflación será, de confirmarse, una evidencia independiente de la inflación, pero no es la primera prueba que tenemos de que la inflación tuvo lugar.
Evolución de las estructuras en el Universo
Image credits:ESA – C. Carreau

Miercoles, 9 de Abril de 2014

Hablando del Big Bang, la inflación cósmica en "El Cinturón de Orión"

Hoy comparto con vosotros el programa de 201 del Cinturón de Orión donde hablamos del Big Bang, la inflación, el universo, etc. Este programa ha sido destacado como programa de la semana por la plataforma ivoox. Todo un lujazo y placer haber contribuído a ello. Os dejo con el programa, espero que lo disfrutéis:

Miercoles, 19 de Marzo de 2014

El súper veloz ‘Bang’ en el Big Bang

La velocidad de la luz nos afecta más de lo que pensamos pues nos ayuda a entender la diferencia entre causa y efecto, sin embargo, el movimiento del espaciotemporal mismo puede hacer que la velocidad de la luz parezca una tortuga.



Por Glenys Álvarez

Hay muchas cosas extrañas en el universo. A veces hasta está de más decirlo; recuerdo la primera vez que escuché que era probable que las estrellas que veía en el cielo ya estuvieran muertas, de hecho, a veces lees de estrellas que parecen ser más viejas que el Cosmos mismo. Pensar en ese viaje prolongado de la luz me producía vértigo. Luego me enteré que los fotones tienen un límite de velocidad, y no sólo eso, nadie más puede ir más rápido que ellos, es imposible, una de esas reglas que debe detener cualquier asomo de neutrinos llegando primero a la meta, como una vez dijeron los italianos. Sin embargo, eso es relativo, veamos por qué.

Primero nos enfrentamos a que la velocidad de la luz no es relativa. No importa quién la mida o dónde la mida o cómo la mida, si está moviéndose si está estático (¿recuerdan el ejemplo del tren?), será siempre la misma: 300,000 kilómetros por segundo en el vacío, una constante universal. Eso es tan rápido que no basta la palabra. Pero también es constante, ¿no? No puedes medir la velocidad de otro carro si estás en movimiento, de hecho, por eso es que los policías deben permanecer estacionados mientras miden la velocidad de los carros, sino van a tener la velocidad de ellos y del carro mezclada, las leyes de física del mundo macro, nos explicaba Einstein, son relativas a muchas variables como esas. Pero algo que no parece cambiar es la constancia de la velocidad de la luz.

Sin embargo, ahora que el nacimiento del universo anda navegando por todas las noticias del globo, escuchamos un dato que rompe esta ley y la encontramos en la súper veloz inflación del cosmos. Primero, intentemos imaginar la billonésima parte de un segundo. Esa fue la duración del primer explosivo instante inflacionario, y voló, nos dicen, en ese picosegundo el estallido cósmico le echó gasolina al fuego, eso hizo a la explosión en la Gran Explosión mucho más explosiva, valgan las redundancias, cambiamos de pensamiento cuando descubrimos que el universo no sólo se expandía sino que había nacido de un Bang inflacionario y que en vez de una expansión lineal, experimentó un crecimiento exponencial. Y que, en ese picosegundo, la explosión fue más veloz que la luz.

Pero, ¿cómo es eso posible? ¿Una ocasión especial?
La velocidad de la luz nos afecta más de lo que pensamos pues nos ayuda a entender la diferencia entre causa y efecto. Si las cosas se movieran más rápido que la luz nuestras experiencias serían realmente extrañas. Por ejemplo, si vas a atrapar una bola de béisbol que viaja más rápido que la luz, sentirás que llegó a tu guante mucho antes de ver que fuera lanzada. Sería el efecto antes de la causa. Sin embargo, la velocidad de la luz es sólo un límite para objetos, como pelotas de béisbol mientras se mueven a través del espacio.
El movimiento del espaciotemporal mismo, sin embargo, puede hacer que la velocidad de la luz parezca una tortuga.

Lo que ocurre es que el universo se expande y se acelera. Los investigadores indican que el universo se expande más rápido que la velocidad de la luz, y, quizás lo más sorprendente, algunas de las galaxias que podemos ver en estos momentos se están alejando a velocidades más rápidas que la luz, muchas de ellas las dejaremos de ver para siempre. Pero es aquí donde debemos detenernos un poco y explicar la diferencia entre movimiento y expansión. Cuando hablamos de lo primero, nos referimos a un objeto que cambia de posición en el espaciotemporal, cuando hablamos de la expansión del espaciotemporal, obviamente, no podemos referirnos a lo mismo, la velocidad de la luz es una restricción para los objetos que existen en el espaciotemporal, no para el espaciotemporal mismo.

Así que en ese picosegundo de inflación, donde todo el universo era del tamaño de un electrón, la explosión movió materia más rápido que un fotón y lo sigue haciendo hasta entre algunas lejanas galaxias, pues el espacio anda acelerándose (culpan a una aún indeterminable energía oscura). Así que agárrense, que el proceso es veloz y, aparentemente, no hay límite de velocidad.
Martes, 18 de Marzo de 2014

Ondas gravitacionales desde el Polo Sur confirman el Big Bang