Archivos en la categoría circuitos

Domingo, 14 de Diciembre de 2014

Conoce el proyecto del conectoma humano

Así como la decodificación del ADN ha ayudado en ramas más allá de la genética, la elaboración de un mapa de todas las conexiones cerebrales favorecerá a muchas áreas que no tienen que ver directamente con la neurología




Los médicos en el mundo antiguo pensaban que el cerebro era una flema. De hecho, el granAristóteles lo asemejaba a un refrigerador que, primordialmente, se encargaba de enfriar al apasionado corazón. Bien poético de parte del gran pensador. 


Ciertamente, el cerebro nos hace creer que la pasión reside en el corazón, que el enamoramiento comienza con síntomas en el estómago, que los sentimientos son algo más que neuronas descargando electricidad a través de axones y sinapsis, que somos algo más que nuestros cerebros.

Y hoy nos parece tan común saber sobre las dendritas, la masa negra, la materia blanca y la gris, las interesantes y populares neuronas; sin embargo, la neurología y la neurociencia son ramas científicas cuyo conocimiento no se inicia hasta el siglo XVII, el británico Thomas Willis, el italiano Camilo Golgi y el españolSantiago Ramón y Carvajal, entre muchos otros, se encargaron de lanzarlas hacia el progreso, pero sólo ahora, en el siglo XXI, nos acercamos seriamente a decodificar detalladamente el cerebro.
 
Y los esfuerzos para conocer bien esa máquina se han intensificado. Europa ha prometido la inversión de mil millones de dólares para elProyecto Cerebro Humano, cuyo objetivo es producir un modelo computacional del cerebro. En Estados Unidos, el presidenteBarack Obama anunció en el año 2010 una iniciativa conocida como Investigaciones sobre el Cerebro a través de Avanzadas e Innovadoras Neurotecnologías (BRAIN, en inglés), que está siendo impulsada a través de los institutos nacionales de la salud (NIH), para avanzar la investigación del cerebro, concentrándose primero en el desarrollo de nuevas tecnologías. Conocido como el programa “Grand Challenge” o el gran reto, ha prometido 100 millones de dólares en financiamiento sólo para el primer año de lo que se anticipa será un empuje de una década.
 
“Ya se está llevando a cabo una gran cantidad de investigación, tanto así que el paisaje de la neurociencia es casi tan difícil de aprehender como el del cerebro mismo. Los Institutos Nacionales de la Salud gastan, para poner un ejemplo, 5.500 millones de dólares al año en neurociencia, gran parte de ella dirigida hacia la investigación de enfermedades como elParkinson y el Alzheimer”, escribió el periodista científico James Gorman para el periódico The New York Times.
 
El popular periodista científico estadounidense Carl Zimmer, por ejemplo, es una de las numerosas personas que han permitido que en el laboratorio de Van Wedeen le escaneen el cerebro. Este proyecto es parte del esfuerzo estadounidense por comprender el órgano, no sólo la parte biológica sino el alambrado que lo sostiene, ese que el equipo de Wedeen está estudiando en estos momentos en el Centro Martinos para Imágenes Biomédicas donde ya están creando representaciones del alambrado cerebral.

En la actualidad, 160.935 kilómetros de fibras nerviosas en la materia blanca del cerebro están siendo analizadas; estas fibras son las que conectan los varios componentes de la mente y hacen posible que pensemos, sintamos y percibamos. Lo interesante, indicaWedeen, es la red que vemos debajo del alambrado cerebral.
 
También las patologías neurológicas, desde psicosis y esquizofrenias hasta Parkinson yAlzheimer, pueden ser analizadas bajo el microscópico neurológico. Es precisamente uno de los objetivos de poseer un mapa cerebral. Los científicos Joshua W. Buckholtzemail, Andreas Meyer-Lindenberg y la neuropsicóloga Deanna Barch, son algunos de los que esperan que el conectoma humano los ayude en el estudio de distintas enfermedades neurológicas. Los estudios de Barch, por ejemplo, quien está trabajando en el proyecto del conectoma con el equipo de la Universidad de Washington, se concentran en la depresión.
 
“Los datos que obtendremos del conectomapodrían ayudarnos a responder preguntas como: ¿Qué nos hace distintos a ti y a mí y cómo la forma en que está diseñado el cableado en nuestros cerebros, refleja las diferencias en nuestros comportamientos, pensamientos, emociones, sentimientos y experiencias? ¿Nos ayudará a entender cómo los trastornos de la conectividad, o trastornos del alambrado cerebral, contribuyen o causan problemas neurológicos y problemas psiquiátricos?”, expresó Barch, quien es optimista al respecto.
 
Los orígenes del Conectoma
El neurólogo Olaf Sporns acuñó la palabra “conectoma” en una publicación del 2005 titulada, "El conectoma humano: Una descripción estructural del cerebro humano”. El científico lo define como la descripción completa de la conectividad estructural (el cableado físico) del sistema nervioso de un organismo. Precisamente, Grossman escribe que de las muchas "metáforas utilizadas para explorar y entender el cerebro, la cartografía es, probablemente, la más duradera, tal vez porque los mapas son tan familiares y comprensibles".
 
“Hace un siglo, los mapas cerebrales eran como los mapas del siglo XVI de la superficie de la Tierra”, dijo David Van Essen, quien está a cargo de los esfuerzos de Conectoma en la Universidad de Washington. “Ahora las caracterizaciones son más como un mapa del siglo XVIII”. Eso quiere decir, explican, que los continentes, cordilleras y ríos están cada vez más claramente definidos.
Sábado, 20 de Septiembre de 2014

Un subibaja neuronal apunta a la conducta autista

A través de la optogenética, investigadores descubrieron un circuito neuronal en ratones que se asemeja a un balancín, por un lado están las neuronas sociales, por el otro conductas repetitivas de autoaseo



Glenys Álvarez

Antes de adentrarnos en estos asombrosos hallazgos, comprendamos un poco sobre la optogenética. En esta técnica, los investigadores alteran genéticamente las neuronas en cerebros de roedores para que expresen proteínas sensibles a la luz proveniente de organismos microbianos. Una vez hecho esto, los científicos implantan un pequeño cable de fibra óptica en el cerebro de esos roedores, este cable hace que una luz brille y los investigadores pueden controlar así la actividad de las células, así como los comportamientos asociados a la actividad.

Una vez entendemos esto, podemos comprender mejor los hallazgos en estos nuevos experimentos elaborados en el Instituto de Tecnología en California o Caltech. Los investigadores descubrieron poblaciones de neuronas antagónicas, es decir, unas se encargaban de que el animal sea social, otra de comportamientos asociales como el autoacicalamiento repetitivo. Los científicos dicen que se asemeja a un circuito de subibaja o balancín en la amígdala, una parte del cerebro involucrada en comportamientos sociales innatos.

“Este descubrimiento puede tener implicaciones para la comprensión de las disfunciones de circuitos neuronales que subyacen en el autismo en los seres humanos, donde vemos problemas en las conductas sociales y la tendencia a la generación de conductas repetitivas”, escribieron.

Por supuesto, la experimentación está limitada a los roedores, aunque sabemos que la evolución de nuestros cerebros tomó un camino distinto aunque ambos órganos mamíferos salieron de un mismo tronco. Durante la experimentación, se usaron distintos grupos de ratones modificados. Los investigadores indican que cuando el láser era dirigido a las neuronas sociales con alta intensidad, los ratones se volvían agresivos atacando a un intruso que se ponía en su jaula. Sin embargo, cuando el láser era activado ligeramente, los ratones continuaban siendo sociales, interactuando con el intruso, ya sea intentando aparearse con él o acicalándolo. Nada de agresividad ni violencia.

Ahora bien, cuando las neuronas asociales eran activadas con la luz láser de la optogenética, los ratones ignoraban a los intrusos y preferían autoacicalarse de forma repetitiva, ya sea limpiándose las patas o acicalándose el rostro, así se mantenían hasta minutos después de apagar la luz. Más aún, los investigadores podían detener esta conducta repetitiva. Por ejemplo, si un ratón solitario comenzaba a acicalarse, los investigadores podían activar la luz en las neuronas sociales y el acicalamiento terminaría en el momento. Una vez apagado, el ratón regresaba a su conducta repetitiva.

Otra magnífica e interesante característica en el estudio es que estas dos poblaciones de neuronas se distinguen de acuerdo a la subdivisión más fundamental de los subtipos de neuronas en el cerebro: las neuronas "sociales" son neuronas inhibitorias (que liberan el neurotransmisor GABA, o ácido gamma-aminobutírico) mientras que las "neuronas de autoacicalamiento" son neuronas excitadoras (que liberan el neurotransmisor glutamato, un aminoácido).

“Sorprendentemente, estos dos grupos de neuronas parecen interferir con la función de cada una, es decir, la activación de las neuronas sociales inhibe la conducta de autoaseo, mientras que la activación de las neuronas de autoaseo inhibe el comportamiento social. Así, estos dos grupos de neuronas parecen funcionar como un subibaja, controlando por un lado si los ratones interactúan con otros y por el otro si se concentran en sí mismos. Fue completamente inesperado que los dos grupos de neuronas podrían ser distinguidos por si eran excitadoras o inhibidoras. Si alguna vez hubo un experimento que excavara en las articulaciones mismas de la naturaleza,”, exclamó David J. Anderson de Caltech y uno de los autores, “este es".

Los autores también han relacionado los hallazgos con las distintas condiciones neurológicas en el cerebro autista debido a que en la condición hay una disminución en las interacciones sociales y, frecuentemente, un aumento en comportamientos repetitivos. Ciertamente, otros estudios han demostrado que las perturbaciones en los genes implicados en el autismo muestran una disminución similar en la interacción social y el aumento de la conducta de acicalamiento repetitivo en ratones. Pero el nuevo estudio ayuda a proporcionar un vínculo necesario entre la actividad genética, la actividad cerebral y las conductas sociales en los roedores.

¿Cómo puede esto ayudar a modificar el comportamiento humano?

“Estamos muy lejos de eso”, responde Anderson, “pero si encuentras las neuronas de la población derecha, podría ser posible reemplazar el componente genético de un trastorno del comportamiento como el autismo, con sólo cambiar la actividad de los circuitos al inclinar la balanza del subibaja hacia la otra dirección”, explicó.


El trabajo fue publicado en línea el 11 de septiembre en el diario Cell.