Archivos en la categoría cerebro motor

Viernes, 3 de Abril de 2015

Una prótesis tan natural como la extremidad que ha reemplazado

Las prótesis, robots y otros aparatos para personas con distintas discapacidades ya están integrándose fuertemente con el cerebro del paciente.



Por Glenys Álvarez

En el futuro, la tecnología desea integrarse y trabajar contigo. Es lo que hemos estado observando durante años, los ingenieros enseñan a las computadoras a seguir las órdenes del cerebro del paciente a través de una interfaz, y cada vez se entienden más. Hemos visto personas comunicarse de una oficina a otra utilizando sólo el cerebro y una computadora, las prótesis son más eficientes porque han sido sintonizadas bajo el mando de las neuronas del paciente y hasta las sillas de ruedas estarán bajo el mando neuronal del paciente.

El objetivo es que se sienta natural, que la mano cierre obedeciendo las órdenes directas del cerebro, como una mano normal, no porque existe un botón que lo haga, sino porque ya está conectada a los nervios de la persona que la requiere. La meta final es que sean tan cómodas como las originales. Estos dispositivos están modelados para decodificar las señales del cerebro y actuar acorde, conectados a la médula espinal permiten que exista comunicación directa entre la persona y la tecnología para que funcione como un motor natural, recibiendo, entendiendo y aplicando las órdenes del cerebro.

En esta ocasión, por ejemplo, el investigador José del R. Millán, del Instituto Federal Suizo de Tecnología en Lausanne, presentó esta semana un nuevo trabajo en la conferencia de la Sociedad de Neurociencia Cognitiva (SCN) en San Francisco, asegurando que las nuevas neuroprótesis permiten realizar tareas complejas. Millán, quien comenzó su carrera diseñando robots autónomos que pueden aprender de sus propias experiencias, ahora se dedica a que estos robots ayuden a las personas con discapacidades.

“El objetivo es que lo hagan de una forma muy natural, directa e intuitiva. ¿Y qué más directo que decodificar la intención del usuario de sus propias señales cerebrales?”, pregunta.

En medio del cerebro del usuario y el dispositivo se encuentra la interfaz. Es lo que se encarga de leer y decodificar las señales del paciente, en otras palabras, al pensar, 'deseo cerrar mi mano en un puño', la interfaz lo lee y lo decodifica para que la computadora lo aplique, así, el pensamiento pasa del cerebro, a la interfaz y a la prótesis. Si nos ponemos a pensar en todas las cosas que es capaz de hacer nuestro cerebro, recordamos claramente lo dificultoso que una tarea como esta puede ser. Podemos hacer actividades varias, muchas de forma automática, mientras nuestro cerebro se concentra en otras, y es precisamente donde los investigadores quieren llegar.

“Las prótesis y los robots que nuestras interfaces controlan son inteligentes, ya que pueden interpretar muchos detalles de bajo nivel que no necesariamente están codificados en las órdenes mentales, también trabajan de forma autónoma, esta función refleja cómo nuestras áreas profundas del cerebro, la médula espinal y el sistema musculoesquelético, trabajan juntos en muchas tareas rutinarias, lo que permite a nuestros cuerpos hacer tareas sencillas, mientras centramos nuestra atención en otra parte”, aseguró.

En la imagen, por ejemplo, vemos una silla de ruedas que el equipo de Millán elaboró el año pasado. Esta silla de ruedas está controlada completamente por el cerebro del usuario, quien puede manejarla por un largo periodo de tiempo debido al sistema de control compartido que reduce el trabajo cognitivo que debe poner el usuario para controlarla. Estas sillas de ruedas se encuentran ahora en su fase de evaluación.

Los investigadores se encuentran ahora ante tres retos: el primero es encontrar nuevas interfaces físicas, además del EEG, que funcionen de forma permanente y por largos períodos de tiempo, el segundo es alcanzar una mejoría en la retroalimentación sensorial y, finalmente, tenemos el foco de la neurociencia cognitiva hoy, decodificar e integrar la información en un circuito entre la prótesis y los procesos perceptivos del paciente, incluyendo atender los errores que cometan las prótesis y la anticipación en puntos críticos y decisivos.

“Las neuroprótesis futuras, como robots y exoesqueletos controlados a través de interfaces inteligentes, estarán fuertemente acopladas con el usuario de tal manera que el sistema resultante podrá sustituir y restaurar las funciones de las extremidades deterioradas porque será controlado por las mismas señales neuronales que controlan sus contrapartes naturales. Esto ya no es ciencia ficción”, concluyó.


Millán presentó su nuevo trabajo aquí: https://www.cogneurosociety.org/annual-meeting/upcoming-meeting/

Crédito de imagen: José del R. Millán
Domingo, 10 de Agosto de 2014

Tus hábitos tienen una reconocible señal neuronal

Los hábitos se forman fuera de la intención, cuando erradicamos la meta de la acción y la hacemos de forma automática, ya sin prestar atención, este cambio en el cerebro hace posible que los hábitos sean conductas tan rígidas






Por Glenys Álvarez


Estudios han encontrado que toma entre 15 a 254 días formar un hábito de verdad. Más aún, investigaciones sugieren que en un promedio, el 40% de las actividades diarias que hace la gente es realizada en el mismo contexto todos los días. Ciertamente, existe un componente repetitivo en una conducta habitual, los hábitos, nos dicen, son el resultado de un aprendizaje de asociación.
“Encontramos patrones de comportamiento que nos permiten alcanzar metas. Repetimos lo que funciona y, cuando estas acciones se repiten en un contexto estable, formamos asociaciones entre señales y respuestas”, explica Wendy Wood durante su conferencia en la Reunión Anual 122ª de la Asociación Americana de Psicología.
La investigadora asegura que un hábito tiene una señal neuronal reconocible. Primero, indica, debemos pensar que estamos hablando de dos distintos contextos en el cerebro: el primero tiene que ver con intenciones y metas, el segundo tiene que ver con un patrón repetitivo que funciona sin requerir la atención de la persona.
Veamos este estudio que realizaron los investigadores, tiene que ver con las rositas de maíz o popcorn, ese comestible tan popular en los cines del mundo. Los investigadores probaron distintos grupos, en el primer conjunto, los grupos debían comer el popcorn y decir cuál le gustaba más, uno que estaba fresco y otro que no. Por supuesto, todos eligieron las rositas de maíz frescas como las mejores. Sin embargo, cuando se pone otra variable en el medio y se cambian las señales en el contexto, las personas cambian la intención y no están tan atentas al estado del popcorn. En el nuevo experimento, los sujetos no notaron la diferencia entre el popcorn fresco y el que no lo estaba, debido a que muchos ya tenían el hábito de comerlo mientras ven la película, sin pensar en ello.
Lo que ocurre es que cuando el cerebro encuentra una acción que funciona, ya sea brindándonos placer o produciendo resultados positivos sobre algo, repetirla todos los días en el mismo contexto borra la intención, y nuestra atención para alcanzar esas metas, y puede enfocarse en otras acciones mientras la repite de forma automática. Cuando estás aprendiendo una respuesta asociativa, entran en acción los ganglios basales, que son parte de la corteza prefrontal y ayudan en la memoria de trabajo o a corto plazo, para que puedas tomar decisiones. Al repetir el comportamiento en el mismo contexto, la información se reorganiza en el cerebro. En vez de permanecer en los ganglios se mueve hasta el motor sensorial que sostiene las representaciones de las asociaciones de respuesta a señales. En otras palabras, el cerebro ya no retiene la información sobre el objetivo o resultado. Este cambio de objetivo ayuda a explicar por qué nuestros hábitos son conductas tan rígidas.
“Hay una dualidad mental en juego. Cuando nuestra mente intencional participa, actuamos hacia el cumplimiento de un resultado que deseamos y, típicamente, somos conscientes de nuestras intenciones. Las intenciones pueden cambiar rápidamente, porque podemos tomar decisiones conscientes acerca de lo que queremos hacer en el futuro, lo que puede ser diferente al pasado. Sin embargo, cuando la mente habitual se enciende, nuestros hábitos funcionan en gran medida fuera de la consciencia. No podemos fácilmente articular cómo hacemos nuestros hábitos o por qué los hacemos, tampoco podemos cambiarlos fácilmente. Nuestras mentes no siempre se integran de la mejor manera posible. Incluso cuando sabes la respuesta correcta, no puedes cambiar el comportamiento habitual”, dice Wood.
¿Consejos?
Para Wood, muchos programas que desean ayudar a los demás a cambiar ciertos hábitos, se concentran más en la intención. Sin embargo, es en la repetición como resultado del contexto y las señales que produce esa forma automática en que desempeñamos nuestros hábitos; por eso fallan a largo plazo. Ciertamente, al principio las personas se sienten motivadas y emocionadas por alcanzar las metas, ya que muchos de estos programas cambian la intención, enseñan la teoría; pero no logran borrar el patrón o eliminar el hábito que regresa fuertemente una vez se encuentran con las señales apropiadas.
Recuerda dos cosas, asegura Wood, cambiar el contexto y repetir nuevos patrones. Como dijimos al principio, si logras esperar entre dos semanas a casi un año, y cambiar lo que te rodea de alguna forma, ya sea grande o pequeña, para no reaccionar a las mismas señales de siempre, a lo mejor formes un nuevo hábito que realmente te beneficie.


Publicado en el diario: http://www.spsp.org/
Miercoles, 25 de Junio de 2014

Pensamientos convertidos en acción a través de una computadora

Es el primero en hacerlo. El joven consiguió mover su mano y sus dedos paralizados con la ayuda de un microchip implantado en su cerebro, un algoritmo computacional y una moderna manga de sensores



Por Glenys Álvarez

El movimiento fue algo sutil, pero épico para la neurociencia. El joven estadounidense de 23 años, cuadripléjico debido a una lesión que sostuvo en la médula espinal, movió sus dedos y la mano, no lo necesario para sostener fuertemente una cuchara pero sí para “casi” hacerlo. Y, en este momento, eso no es poco. De hecho, es una de esas noticias pioneras, Ian Burkhart, del estado de Ohio, es la primera persona en mover su mano paralizada a través de sus propios pensamientos.

Y hemos visto los ensayos y experimentos que llevaron a la neurociencia hasta aquí. Por mucho tiempo, neurocientíficos han utilizado algoritmos computacionales para traducir los impulsos eléctricos en nuestro cerebro y enviarlos para crear movimiento, ya sea con macacos moviendo el cursor en una computadora o ejecutando órdenes para alguna máquina. Indudablemente, la mejor comparación fue emitida por el doctor Chad Bouton, investigador principal del experimento del Instituto Memorial Batelle, que enlazó la sangre con las señales eléctricas.

“Lo que hemos hecho es muy similar a un bypass del corazón lo único que en vez de pasar sangre estamos pasando señales eléctricas", dijo Bouton. “Estamos tomando estas señales del cerebro, evitamos el área lesionada y las llevamos directamente a los músculos”.

El equipo en Batelle lleva décadas trabajando en el sistema completo. La tecnología ha sido llamada Neurobridge, es decir, como un puente neurológico que salta por encima de la lesión, ignorándola y llevando los impulsos directamente a los músculos paralizados. Sabemos que una lesión en la médula desconecta al cerebro de los músculos del cuerpo, dejando a la persona incapacitada para enviar las órdenes a los músculos para que se muevan; Neurobridge crea un puente por encima de la lesión para que el tránsito de las señales eléctricas neuronales se mueva sin problemas.

Pues bien, para crear este puente se combinaron algoritmos que aprenden a decodificar la actividad cerebral, en otras palabras, qué quieren decir las neuronas con estas órdenes y cómo las interpreto; esencialmente, se trata de traducir los pensamientos del joven y transmitirlos hacia la extremidad paralizada. En este caso, las señales del cerebro de Ian utilizaron este puente, evitando así su lesión en la médula espinal para llegar a los músculos.

Burkhart, que quedó paralítico hace cuatro años en un accidente de buceo, vio la oportunidad de participar en los seis meses de ensayo clínico aprobado por la FDA, en el Centro Médico Wexner de la Universidad del Estado de Ohio, como una oportunidad para ayudar a otros con lesiones de la médula espinal. Él es el primero de cinco voluntarios que probarán el sistema.

“Al principio despertó mi interés porque me gusta la ciencia y es bastante interesante”, dijo Burkhart. “Me he dado cuenta de que esto es lo que hay, lo que tengo. Puedes sentarte y quejarte pero eso no te va a ayudar. Así que lo mejor es trabajar duro, hacer lo que puedas y seguir adelante con tu vida”.

El desarrollo de algoritmos, programas computacionales y la banda de estimulación fue lo primero. Se experimentó grabando los impulsos neuronales de un conjunto de electrodos implantados en el cerebro de una persona paralizada. Estos datos fueron utilizados para ilustrar el efecto del dispositivo en el paciente y probar el concepto. Entonces, hace dos años, el equipo se unió con científicos y médicos de la universidad de Ohio, especialmente Ali Rezai y Jerry Mysiw, para diseñar los ensayos clínicos y, durante una cirugía de tres horas el 22 de abril, Rezai implantó un chip, más pequeño que un guisante, en la corteza motora del cerebro del joven.

Este diminuto instrumento tiene el trabajo de interpretar las señales del cerebro y enviarlas a una computadora, allí, la máquina las decodifica y las envía a la manga de estimulación con electrodos en alta definición que se encargan de estimular los músculos adecuados para que ejecuten los movimientos deseados. Más aún, el equipo consiguió que en menos de una décima de segundo, los pensamientos de Burkhart se convirtieran en acciones. Eso es una hermosura.

“La cirugía implantó el microchip sensor en la zona precisa en el cerebro de Ian que controla el brazo y el movimientos de la mano”, dijo Rezai.

Esta tecnología puede que un día ayude a pacientes afectados por diferentes lesiones del cerebro y la médula espinal, como accidentes cerebrovasculares y lesiones cerebrales traumáticas. Ciertamente, es lo que Burkham, y muchos como él, esperan.

Puedes ver un video aquí:http://media.eurekalert.org/multimedia_prod/pub/media/75193.mp4