Archivos en la categoría Albert Einstein

Lunes, 23 de Marzo de 2015

Cien años de la relatividad de Albert Einstein

Por: Sergio Torres Arzayús

A sus 36 años, el físico alemán formuló una teoría que cambió la manera de concebir el universo.

Publicado inicialmente en El Tiempo.

Uno de los brotes de creatividad científica más intensos que se ha registrado en la historia de la ciencia ocurrió hace 100 años. En noviembre de 1915, Albert Einstein, un joven alemán, de 36 años, formuló una teoría que cambió la manera como el Homo sapiens sapiens concibe el universo: la teoría de la relatividad general.

Se trata de una teoría abstracta que, a pesar de su fama de ser remota de lo cotidiano, ha generado aplicaciones prácticas, como la tecnología de GPS (sistema de posicionamiento global) con la cual se estiman mejoras en la eficiencia del tráfico aéreo que representarán ahorros de miles de millones de dólares.

A Einstein le frustraba cuando los periodistas le pedían que resumiera su teoría en un minuto. ¿Cómo podía diluir su trabajo de 10 años en unos pocos minutos? Un científico arrogante le diría al periodista que no le hiciera perder tiempo. Pero así no era Einstein, todo lo contrario, él era accesible y para nada pretencioso.

En uno de esos encuentros con la prensa, Einstein respondió a la pregunta qué es la relatividad con una escueta frase: “Es una teoría del espacio y del tiempo que conduce a una teoría de la gravedad”.

En todo momento tenemos contacto con el espacio y con el tiempo: el espacio que ocupamos y en el que nos movemos, el tiempo que transcurre entre los eventos que suceden en la jornada.

¿Cómo llegamos del espacio y el tiempo a la gravedad? Aquí está la genialidad de Einstein.

Con su profunda intuición, se dio cuenta de que la gravedad y la aceleración son el mismo fenómeno. La aceleración –el empujón hacia el frente del bus cuando frena repentinamente– y la gravedad –la fuerza con la que un objeto es halado hacia el piso– son fenómenos indistinguibles, pensaba Einstein.

La aceleración es una propiedad del movimiento y el movimiento ocurre en el espacio y en el tiempo. De la misma forma, la gravedad, por ser igual a la aceleración, es producto del espacio y el tiempo. La gravedad es entonces manifestación de la curvatura del espacio.

¿Cómo lo probó?

Una teoría no tiene valor científico si no genera predicciones específicas que se puedan medir en laboratorios. En este aspecto, la teoría de la relatividad general brilla espectacularmente. Desde el funcionamiento de relojes en campos gravitacionales hasta agujeros negros, la teoría se ha comprobado experimentalmente y es consistente con las observaciones astronómicas.

Acá algunas predicciones: los rayos de luz se desvían al pasar en cercanía de estrellas; los agujeros negros; el tiempo transcurre más lentamente donde la gravedad es más intensa; el universo se expande; los objetos astronómicos en rotación arrastran el espacio como si este fuera melaza; el perihelio de Mercurio (su punto más cercano al Sol) se desplaza cada año por una distancia apreciable; un par de estrellas circulando una en torno a la otra emite ondas de gravedad; la frecuencia de la luz es afectada por la gravedad; la gravedad y la inercia son equivalentes. Todas se han medido con exquisita precisión.

Relatividad, ¿relativismo?

Una de las peores injurias que escucho es cuando se dice que Einstein demostró que la verdad es relativa al observador. Peor es cuando sofisticados críticos extrapolan el concepto de relatividad a las esferas filosóficas y al ámbito humano. La teoría de Einstein nada tiene que ver con los criterios de los humanos para justificar la veracidad de una idea o situación.

Relatividad no es relativismo. Todo lo contrario, la teoría de la relatividad se basa precisamente en identificar las entidades físicas que son invariantes; es decir, independientes del observador.

La teoría de la relatividad fue desarrollada bajo el precepto de que las leyes físicas deben ser las mismas independientemente del estado de movimiento de la persona que está aplicando esas leyes. En 1905 se publicó la teoría de la relatividad restringida, en la cual Einstein descubre que los intervalos de espacio y de tiempo medidos separadamente no son invariantes. La entidad física que es invariante es una combinación del espacio y el tiempo (el espacio-tiempo).

Pensemos en dos eventos: en un avión el pasajero en la silla 31 enciende la luz y un segundo más tarde el pasajero en la silla 2 también lo hace. Lo que Einstein nos dice es que el tiempo transcurrido entre los dos eventos no es una cantidad absoluta: en el avión es un segundo, pero medido en Tierra es diferente.

Igualmente ocurre con la distancia que separa a los dos pasajeros. Existe una cantidad que combina el intervalo de tiempo y la distancia entre los pasajeros que es invariante, tiene el mismo valor en el avión y en tierra. La relatividad general extiende esos conceptos a sistemas que se mueven con aceleración, con lo cual incluye a la gravedad.

El fenómeno Einstein

Las calles de Nueva York alborotadas. Todos, afanados por ver a una personalidad que desfilaba con su caravana de 10 automóviles, como si se tratara de un deportista campeón mundial o una diva del rock. Así recibieron a Einstein en Estados Unidos. Nunca jamás se había visto una reacción del público tan efusiva ante la presencia de un científico. ¿Por qué tanto interés por Einstein?

Cuando llegó a Nueva York, en 1921, Einstein fue recibido como un héroe. Lo esperaba una multitud en las calles.



Todo parte del contexto histórico. En 1919, el ciudadano europeo se encontraba sumergido en el oscuro ambiente de la postguerra. Durante los cuatro años de la Primera Guerra Mundial la humanidad descendió a un nivel de barbarie nunca antes visto. El pesimismo y la desesperanza engendraron un afán latente por hallar algo nuevo.

En ese mismo año, un día de noviembre, los titulares de primera página pregonaban la observación de un fenómeno astronómico de trascendental importancia. ‘Revolución científica -Nueva teoría del universo’ sentenció el periódico The Times de Londres.

Se trata de la confirmación de la desviación de los rayos de luz –predicha por Einstein– observada durante el eclipse de mayo de 1919 por el astrofísico inglés Arthur Eddington.

Con esta confirmación, Einstein se convirtió en una figura pública de fama universal. El hecho de que un científico inglés comprobara una teoría de un científico alemán resonó en la atmósfera europea de la postguerra y fue recibido como un presagio de tiempos mejores.

Einstein y su obra aparecen como un referente al que se podría anclar la posibilidad de redimir la historia. No fue un científico aislado. Desde joven, Einstein se comprometió con el pacifismo, fue activo en el movimiento sionista, apoyó a víctimas de persecución y fue influyente en el movimiento antinuclear.

Los historiadores coinciden en que fue un ser humano extraordinario. De todos los rasgos, el que más lo define es su honestidad intelectual, que lo puso en problemas porque decir lo que pensaba. También era una persona multidimensional, compleja y a veces paradójica.

Como buen científico, ajustaba sus ideas cuando le presentaban nuevos datos. Su pacifismo absoluto, por ejemplo, fue ajustado a la cruda realidad presentada por la ascensión del nazismo. Einstein firmó la carta a Roosevelt que dio inicio al proyecto de la bomba atómica.

A pesar de su apoyo a la causa sionista, fue crítico de Israel en lo relacionado con el tratamiento a las minorías árabes. Sus ideas en la política, su pensamiento multidimensional y su honestidad hicieron que no fuera entendido por todos.

Los físicos nazis rechazaron su ciencia porque era “ciencia judía”. Algunos físicos antisemitas del comité del Premio Nobel bloquearon su nominación. La relatividad fue censurada en la Unión Soviética por falta de pureza ideológica. El cardenal de Boston dictaminó que detrás de las teorías de Einstein se escondía el ateísmo.

Einstein estuvo bajo la mira del senador estadounidense Joseph McCarthy, pero a pesar de acusaciones de sospecha consignadas en el ‘archivo Einstein’ del FBI, nunca se le pudo involucrar con el partido comunista.

Murió en 1955, en Princeton, Nueva Jersey, donde vivía. Aunque bien merecía un sepelio con todos los honores, conforme a su deseo, no se hizo ninguna ceremonia y sus cenizas fueron arrojadas al río Delaware. Polvo de estrella retornando a su hábitat cósmico. Difícil pensar en un final más apropiado para un ser humano excepcional que nos abrió una ventana al universo.



SERGIO TORRES ARZAYÚS*

Especial para EL TIEMPO

*PH. D., astrofísico del Centro Internacional de Física (CIF).

Miercoles, 11 de Marzo de 2015

Cuatro imágenes distintas de la misma supernova

Albert Einstein lo explicó en la Teoría General de la Relatividad: el lente gravitacional; uno de los encantos en el espaciotemporal que hoy nos regala cuatro imágenes distintas de la misma explosión.


Por Glenys Álvarez

Ah, la gravedad, con su indiscutible, pero enigmática presencia. Fuera de nuestro Sistema Solar, su innegable existencia va más allá de la caída de una manzana y Hubble junto a la Universidad de Johns Hopkins acaban de recoger una encantadora primicia. Demos una vuelta primero por eso que se llama lente gravitacional, es un fenómeno explicado por el magnífico físico Albert Einstein que provoca resultados fascinantes.

Bien, imagina un gigantesco quásar que se encuentra a miles de años luz de nuestro sistema, el viaje de la luz del quásar llegaría hasta nosotros y podríamos verlo perfectamente. Sin embargo, en el Universo siempre existirán masivos y gigantescos grupos de galaxias que bloquearán la luz y no le permitirá que continúe su recorrido directo hasta los ojos del observador. Pues bien, cuando la luz del quásar se encuentra con la galaxia masiva que la bloquea, el campo gravitacional de esta masiva galaxia envía la luz a su alrededor, es decir, la dobla y la magnifica. La gravedad en la galaxia actúa como un lente redirigiendo estos rayos de luz hacia afuera de ella.

Pero el asunto no queda ahí, cuando el fenómeno ocurre, en vez de crear una sola imagen del quásar, crea múltiples imágenes y muchas de estas imágenes pueden llegar en distintos momentos a los ojos del observador. Por ejemplo, si la galaxia es simétrica respecto a su eje y su posición entre el quásar y el observador, se podrá ver un anillo del mismo quásar en distintas imágenes. Sin embargo, el caso promedio suele ser lo contrario, que la galaxia masiva en el centro no sea simétrica, es decir, esté descentrada, entonces las distintas imágenes del mismo quásar se mueven también en tiempos diferentes. Es decir, que podemos ver la misma imagen en distintos momentos. Un ejemplo es la repetición del eco de luz que se dio con Eta Carinae, el enlace a ese artículo se encuentra más abajo.

Pues regresando a la noticia, ha sido precisamente lo que ha ocurrido con esta lejana supernova. La luz de esta explosión se encontró con un grupo de galaxias antes de llegar a nuestro sistema, y una de esas galaxias masivas actuó como un lente gravitacional produciendo cuatro imágenes distintas del mismo estallido estelar. Es la primera vez que se observa este fenómeno múltiple con la luz de una supernova y los investigadores rindieron tributo a la Teoría General de la Relatividad de Einstein.

“Este es el objeto más espectacular que hemos encontrado hasta ahora”, dijo Steven A. Rodney, coautor de la investigación en el observatorio Hubble con el Departamento de Física y Astronomía de la Universidad Johns Hopkins. El autor principal del estudio es Adam Reiss, quien ganó el Premio Nobel de Física y la medalla Albert Einstein por su trabajo con supernovas sobre la aceleración del Universo, algo que hoy se le atribuye a la todavía desconocida energía oscura. El equipo, conocido como FrontierSN (Frontera y SN es por supernova) lleva dos años buscando con el Hubble explosiones estelares, hasta el momento han encontrado más de cuatro decenas de supernovas.

La actual se llama Refsdal, en honor al astrofísico noruego Sjur Refsdal, y Rodney dice en el estudio que podemos explicar estas múltiples fotografías capturadas comparándolas con cuatro trenes que salen simultáneamente de la misma estación y viajan a la misma velocidad.

“El cúmulo masivo de galaxias entre la Tierra y la supernova provoca una deformación gravitatoria del espacio-tiempo, que es similar a los diferentes paisajes por lo que estos trenes tienen que atravesar. Cada uno toma un camino diferente, unos un poco más directos que otros, por lo tanto, todos los trenes no llegarán al mismo tiempo a su destino final”, dijo Rodney para AAAs.
Precisamente, los astrónomos no están viendo las primeras imágenes que llegaron a la Tierra sino que las han capturado mientras se están yendo del vecindario, esperando que se desvanezcan completamente.

“Es como si entráramos a la estación y vemos pasar a estos cuatro trenes. No llegamos a tiempo para ver pasar el primer vagón conductor, pero ahora los estamos viendo pasar y esperamos a que el último vagón pase”.

Uno de los objetivos de este estudio, comentan, es la materia oscura. De hecho, los lentes gravitacionales alrededor de estos grupos de galaxias masivas, son pilares para las investigaciones sobre el tema. Sin embargo, existe otra expectativa interesante, tenemos una quinta imagen además de las cuatro que han recogido ahora, y se espera que esa image llegue a nosotros en cinco años. Los astrónomos confían en atraparla desde que entre a la estación. 

Los cuatro puntos amarillos que vemos en la imagen, son las cuatro fotos de la supernova capturada.

Aquí otra noticia interesante sobre el viaje de la luz por el universo:http://www.hechosdehoy.com/el-eco-de-luz-de-una-pareja-de-e…
Esta noticia fue publicada en el diario Science: www.science.com
Martes, 20 de Enero de 2015

En dos lugares el mismo tiempo

¿Está regido el mundo subatómico por leyes distintas a las del mundo macro o las mismas leyes son percibidas distintas en ambos mundos? Un nuevo experimento con átomos de cesio sugiere que la observación elimina la superposición en el mundo macro




Por Glenys Álvarez

Imagina que lances una bola de papel a la papelera y que obtengas dos resultados distintos: una bola de papel está ahora dentro de la papelera, pero la misma bola también se encuentra fuera de ella. No estamos acostumbrados a este tipo de resultados en nuestro mundo de física clásica, pero es lo que ocurre en la cuántica todo el tiempo. La física aún no sabe con precisión si en el mundo real eliminamos de nuestra percepción los demás resultados cuánticos o si ambos mundos reaccionan a reglas distintas. Precisamente, en esta ocasión un equipo de investigadores de las universidades de Bonn en Alemania y Hull en el Reino Unido, ha hecho un experimento observando esta rareza conocida como superposición. El grupo usó átomos de cesio y observaron de forma indirecta que uno toma dos trayectorias simultáneamente.

La cuántica nos habla de una perspectiva distinta que no somos capaces de percibir con los sentidos que poseemos. Científicos como Heisenberg y Schrödinger, para nombrar sólo un par, vienen relatando esta interesante y cuántica historia desde hace décadas (creo que con el segundo comenzó el gusto por los gatos para estos experimentos) una historia que Einstein tampoco supo interpretar correctamente ya que es distinto del mundo de la también extraña física 'clásica'.

Por lo tanto en nuestra realidad, la bola de papel que lanzamos a la papelera cae dentro de ella o no, las dos cosas no ocurren al mismo tiempo como en la superposición cuántica. Como lo expuso el doctor Andrea Alberti del Instituto de Física Aplicada en Bonn, existen dos diferentes interpretaciones para este gran tema, o somos distintos de la cuántica o simplemente producimos un mundo macro con las mismas reglas subatómicas.

“La mecánica cuántica permite estados de superposición de objetos grandes y macroscópicos. Pero estos estados son muy frágiles, incluso seguir la pelota con los ojos es suficiente para destruir la superposición y hacer que siga una trayectoria definida”.

Eso es algo realmente extraño, que la simple observación de un proceso lo selle en una trayectoria específica y no en otra; nos hace pensar sobre multiversos y mundos paralelos. No obstante, es una de las claves en los experimentos teóricos de Schrödinger con su gato en una caja, una vez observamos lo que ocurre, sellamos un resultado y erradicamos el otro. Como dijimos anteriormente, no todos piensan igual, algunos aseguran dentro de una teoría macrorrealista, que los elementos en el mundo macro obedecen leyes físicas distintas a las del mundo subatómico.

"El reto era desarrollar un esquema de medición de las posiciones de los átomos que nos permitiera falsificar teorías macrorrealistas", añadió Alberti.

Los resultados del experimento concluyen que durante la superposición, la observación del resultado erradica uno de los caminos, es decir, la observación sella uno de los resultados eliminando el otro. Para elaborar el experimento, los investigadores agarraron un átomo de cesio con una pinzas ópticas y lo arrojaron en dos direcciones distintas y opuestas, tirando del átomo en el proceso. En el mundo macro, el objeto llegaría a sólo una posición final, en el cuántico, sin embargo, los átomos tomaron dos distintas y de forma simultánea. El experimento mostró precisamente eso, el átomo se superpuso en dos lugares al mismo tiempo.

“Lo que hemos hecho es determinar de la forma más sutil posible la posición final del átomo a través de medidas indirectas", explica Carsten Robens, uno de los miembros del equipo.

De hecho, la imagen indica que hasta tales mediciones indirectas pueden modificar significativamente el resultado de los experimentos. Supongamos que tenemos dos contenedores y un gato (otra vez) "está escondido debajo de uno (a) pero no sabemos cuál, ahora bien, si levantamos tímidamente el que está a la derecha (b) y lo encontramos vacío, llegaremos a la conclusión de que el gato está en el otro que no hemos tocado. Ahora bien, si en vez del derecho levantamos el izquierdo, habríamos molestado al gato (c) y tendríamos que desechar la medida. En el mundo macrorrealista, este esquema de medición no tendría influencia alguna sobre el estado del gato, pero en el mundo cuántico hasta una medida negativa que revele la posición del gato, como en (b), ya sería suficiente para destruir la superposición cuántica e influir en el resultado del experimento. Los físicos de Bonn han observado exactamente este efecto", escribieron los investigadores.

“Esta observación excluye o falsifica, como lo expondría Karl Popper, la posibilidad de que los átomos de cesio sigan una teoría macrorrealista. En su lugar, los resultados experimentales se adaptan bien a una interpretación basada en estados de superposición que se destruyen cuando se produce la medición indirecta. Todo lo que podemos hacer es aceptar que el átomo ha tomado diferentes caminos de forma simultánea”.

Los científicos son cautos en hacer afirmaciones hasta elaborar más confirmaciones del evento.

"El siguiente paso es separar las dos posiciones del átomo de cesio varios milímetros. Si nuevamente encontramos la superposición, la teoría macrorrealista sufriría un nuevo revés”, explica Alberti.


Crédito de imagen: Andrea Alberti / www.warrenphotographic.co.uk
Puedes leer el artículo en inglés aquí: https://journals.aps.org/prx/abstract/10.1103/PhysRevX.5.011003